陀螺儀在車載導航設備中的應用
車載導航是通過接受GPS衛(wèi)星信號定位成功后,確定目標再根據(jù)導航軟件自帶數(shù)據(jù)庫規(guī)劃路線,然后進行導航。因為GPS需要車載導航系統(tǒng)在同步衛(wèi)星的直接視線之內(nèi)才能工作,所以隧道、橋梁、或是高層建筑物都會擋住這直接視線,使得導航系統(tǒng)無法工作。
再者,導航系統(tǒng)是利用三角、幾何的法則來計算汽車位置的,所以汽車至少要同時在三個同步衛(wèi)星的視線之下,才能確定位置。在導航系統(tǒng)直接視線范圍內(nèi)的同步衛(wèi)星越多,定位就越準確。
當然,大多數(shù)的同步衛(wèi)星都是在人口密集的大都市的上空,所以當你遠離城區(qū)時,導航系統(tǒng)的效果就不會太好了甚至根本就不能工作。這就是所謂的“導航盲區(qū)”。
針對這個問題,有導航廠商尋找到了解決之道,而實現(xiàn)精準導航的奧妙在于一個小東西——陀螺儀。
當陀螺儀應用到車載導航上,便大幅度提升了導航的精準度,它的作用體現(xiàn)在:
1、陀螺儀能在GPS信號不好時能繼續(xù)發(fā)揮導航的作用并修正GPS定位不準的問題
在GPS信號不好時,陀螺儀可根據(jù)已獲知的方位、方向和速度來繼續(xù)進行精確導航,這也是慣性導航技術的基本原理。同時也可修正GPS信號不好時定位偏差過大的問題。
2、陀螺儀能比GPS提供更靈敏準確的方向和速度
GPS是無法即時發(fā)現(xiàn)車子速度和方向的改變的,要等跑了一段距離之后才能測出,因此當你車子在非導航情況下轉(zhuǎn)變了方向后,就會出現(xiàn)小陳那樣的狀況,導航就無法辨識你車子的轉(zhuǎn)向,結果把方向?qū)уe了。而陀螺儀能夠在方向和速度改變的瞬間即時測出,從而能讓導航軟件及時的修改導航路線
3、陀螺儀在上立交橋時更靈敏準確的識別
民用GPS的精度是無法識別上沒上立交橋的,而陀螺儀卻可測出車子是否向上移動了,從而能讓導航軟件及時的修改導航路線。依靠GPS衛(wèi)星的信號導航和陀螺儀的慣性導航,有效提高了導航精準度,即使在失去GPS信號后,系統(tǒng)仍能通過自主推算來繼續(xù)導航,為車主提供準確的行駛指示。
陀螺儀在無人機飛行控制系統(tǒng)中的應用
無人機的飛行控制系統(tǒng)是其最主要的組成部分之一,而姿態(tài)的穩(wěn)定控制,則是對無人機順利執(zhí)行各項任務的有效方法。在目前的無人機實際制造與應用中,有的無人機產(chǎn)品是基于三軸陀螺儀和傾角傳感器,來構成全姿態(tài)增穩(wěn)控制系統(tǒng)的。
無人機姿態(tài)增穩(wěn)控制屬于內(nèi)回路控制,它包括姿態(tài)保持與控制、速度控制等模式。內(nèi)回路控制是在以三軸陀螺儀和傾角傳感器獲取無人機飛行姿態(tài)的基礎上,通過對升降舵、方向舵的控制,完成飛行姿態(tài)的穩(wěn)定與控制。
其中,三軸陀螺儀主要用來測量無人機在飛行過程中俯仰角、橫滾角和偏航角的角速度,并根據(jù)角速度積分計算角度的改變。而一般采用雙軸傾角傳感器,與三軸陀螺儀構成全姿態(tài)增穩(wěn)控制回路。
陀螺儀測量得到的角速度信息用作增穩(wěn)反饋控制,使飛機操縱起來變的更“遲鈍”一些,從而利用傾角傳感器測得飛機橫滾角和俯仰角。然后將陀螺儀測得的角速率信息和傾角傳感器測得的姿態(tài)角進行捷聯(lián)運算,得到融合后的姿態(tài)信息。這種較為復雜的捷聯(lián)算法,能夠使姿態(tài)精度得到很大提高。